Introduction to Multilevel Analysis

Prof. Dr. Ulrike Cress
Knowledge Media Research Center
Tübingen
Aim of this session

• What’s the problem about multilevel data?
• Options to handle multilevel data in CSCL

Caution: After this presentation you will not be able to do or fully understand a HLM model
– but you will be aware of all the mistakes you can do!

give you some take-home messages
„Extraverted children perform better in school“

What may be the reason for that?
What may be the processes behind?

What does this mean statistically?
What is the problem about multi-level data?
Example: Effect of Extraversion on Learning Outcome

IV: Extraversion

DV: performance
First view on the data

Extraversion | 7 8 6 | 5 2 4 | 4 5 4 | 5
Performance | 13 14 13 | 9 14 7 | 12 12 11 | 10

Pooled (n=10)
\[r = 0.26 \]

Aggregated (Mean of the groups; n=3)
\[r = 0.99 \]

Mean correlation (n=3)
\[r = 0.86 \quad r = -0.82 \quad r = -0.30 \quad r = -0.08 \]
Hierarchical data

Individual observations are *not* independent
• What does it statistically mean, if the variance within the groups is small?

• with regard to standard-deviation?
• with regard to F?
• with regard to alpha?
Impact on statistics

• Analysis of Variance: heavily leans on the assumption of independence of observations

\[F = \frac{\text{Var}_{\text{between}}}{\text{Var}_{\text{within}}} \]

• Underestimation of the standard error
• Large number of spuriously “significant” results
• Inflation of Alpha
Alpha-Inflation

Intraclass Correlation

<table>
<thead>
<tr>
<th>no. of groups</th>
<th>group size</th>
<th>.00</th>
<th>.01</th>
<th>.10</th>
<th>.30</th>
<th>.50</th>
<th>.70</th>
<th>.90</th>
<th>.95</th>
<th>.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>.05</td>
<td>.05</td>
<td>.07</td>
<td>.14</td>
<td>.24</td>
<td>.38</td>
<td>.63</td>
<td>.73</td>
<td>.88</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>.05</td>
<td>.06</td>
<td>.17</td>
<td>.37</td>
<td>.53</td>
<td>.68</td>
<td>.83</td>
<td>.88</td>
<td>.95</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>.05</td>
<td>.08</td>
<td>.34</td>
<td>.59</td>
<td>.72</td>
<td>.81</td>
<td>.90</td>
<td>.93</td>
<td>.97</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>.05</td>
<td>.17</td>
<td>.57</td>
<td>.77</td>
<td>.84</td>
<td>.90</td>
<td>.95</td>
<td>.96</td>
<td>.98</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>.05</td>
<td>.05</td>
<td>.08</td>
<td>.19</td>
<td>.34</td>
<td>.56</td>
<td>.84</td>
<td>.92</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>.05</td>
<td>.06</td>
<td>.22</td>
<td>.54</td>
<td>.74</td>
<td>.87</td>
<td>.96</td>
<td>.98</td>
<td>.98</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>.05</td>
<td>.10</td>
<td>.49</td>
<td>.80</td>
<td>.90</td>
<td>.96</td>
<td>.99</td>
<td>.99</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>.05</td>
<td>.22</td>
<td>.78</td>
<td>.93</td>
<td>.97</td>
<td>.99</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>.05</td>
<td>.05</td>
<td>.10</td>
<td>.27</td>
<td>.51</td>
<td>.78</td>
<td>.97</td>
<td>.99</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>.05</td>
<td>.07</td>
<td>.32</td>
<td>.74</td>
<td>.92</td>
<td>.98</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>.05</td>
<td>.12</td>
<td>.69</td>
<td>.95</td>
<td>.99</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>.05</td>
<td>.31</td>
<td>.94</td>
<td>.99</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>.05</td>
<td>.06</td>
<td>.13</td>
<td>.44</td>
<td>.78</td>
<td>.97</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>.05</td>
<td>.08</td>
<td>.49</td>
<td>.94</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>.05</td>
<td>.16</td>
<td>.91</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>100</td>
<td>.05</td>
<td>.49</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

(Stevens, 1996, 240)
1st take-home message

you are not allowed to use standard statistics with multi-level data
Stochastic Non-Independency

…. is caused by

1. **Composition**: people of the groups are already similar *before* the study even begins
 is a problem if you can not randomize
Stochastical Non-Independency

.... is *caused* by

2. **Common fate** caused through shared experiences during the experiment is always a problem in CL
Stochastic Non-Independency

.... is caused by

3. Interaction & reciprocal influence
Hierarchical data

Intra-class correlation
2nd take-home message: Relevance for Learning Sciences

- CL explicitly bases on the idea of creating non-independency
- We want people to interact, to learn from each others, etc.
- CL should even aim at considering effects of non-independency
- if you work on CL-data, you have to consider the multi-level structure of the data not just as noise but as an intended effect
How to do this adequately?

Possible solutions

1. Working with fakes
2. Groups as unit of analysis
3. Slopes as outcomes
4. Hierarchical linear analysis (HLM)
5. Fragmentary (but useful) solutions
Solution 1: Working with fake confederates and bogus feedback in a classical experiment: conformity study Asch (1950)
Solution 1: Working with fake

Pros:
- well established method in social psychology
- high standardization
- situation makes people behaving like being in a group, but it leads to statistically independent data
- causality

```plaintext
     \[ \rightarrow \]
```

- sometimes easy to do in CSCL → anonymity
Solution 1: Working with fake

Cons:

- artificial situation
- no flexibility
- only simple action-reaction pairs can be faked. No real process of reciprocal interaction

• non dynamics
Solution 2: Unit of Analysis

- **Group level**: Aggregated data

Pros:
- statistically independent measures

Cons:
- need of many groups
- waste of data
- results not valid for individual level → Robinson - Effect
Robinson-Effect (1950)

- illiteracy level in nine geographic regions (1930)
- percentage of blacks (1930)

regions: \(r = 0.95 \)
individuals: \(r = 0.20 \)

→ Ecological Fallacy: inferences about the nature of specific individuals are based solely upon aggregate statistics collected for the group to which those individuals belong.

Problem: Unit of analysis
3rd take-home message

You can use group-level data
- but the results just describe the groups, not the individuals
Solution 2: Unit of Analysis

• **Individual level**: centering around the group mean / standardization → elimination of group effects

\[
x - M(x) \ldots
\]
\[
y - M(y) \ldots
\]
Solution 2: Unit of Analysis

Pros:
- easy to do
- makes use of all data of the individual level

Cons:
- works only, if variances are homogeneous (centering)
- loss of information about heterogeneous variances (standardization)
- differences between groups are just seen as error-variance
Solution 3: Slopes as Outcomes

Burstein, 1982

- Team 1: \(y = ax + b \)
- Team 2: \(y = ax + b \)

Performance vs. Extraversion

\[y = ax + b \]
Solution 3: Slopes as Outcomes

Pros:

• uses all information
• focus is on interaction effects between group-level (team) and individual-level variable

Cons:

• descriptive
• just comparing the groups which are given → no random-effects are considered
Consider the slopes of the different groups. They show group effects!

e.g. it is a feature of the group, if extraverted members are more effective

→ slopes describe groups
→ slopes are DVs
Two Main ideas

the groups (you have data from) represent a *randomly chosen sample* of a population of groups! (random effect model)

The slopes and intercepts are systematically varying variables.
Solution 4: Hierarchical Linear Model

Bryk & Raudenbush, 1992

performance y

variation of slopes
variation of intercepts

predicted with 2^{nd} level variables

extraversion x

Team 2
$y = \alpha x + b$

Team 1
$y = ax + b$
Equation system of systematically varying regressions

Level 1: \[Y_{ij} = \beta_{0j} + \beta_{1j}X_{ij} + r_{ij} \]

\(\beta_{0j} \) = intercept for group j
\(\beta_{1j} \) = regression slope group j
\(r_{ij} \) = residual error
HLM: Equation system

Level 1: \[Y_{ij} = \beta_{0j} + \beta_{1j}X_{ij} + r_{ij} \]

Level 2:
- \[\beta_{0j} = \gamma_{00} + \gamma_{01}W_j + u_{0j} \]
- \[\beta_{1j} = \gamma_{10} + \gamma_{11}W_j + u_{1j} \]

\(W = \) explanatory variable on level 2
 e.g. teacher experience
Total model

Level 1: \[Y_{ij} = \beta_{0j} + \beta_{1j} X_{ij} + r_{ij} \] (1)

Level 2: \[\beta_{0j} = \gamma_{00} + \gamma_{01} W_j + u_{0j} \] (2)
\[\beta_{1j} = \gamma_{10} + \gamma_{11} W_j + u_{1j} \] (3)

Put (2) and (3) in (1)
\[Y_{ij} = (\gamma_{00} + \gamma_{01} W_j + u_{0j}) + (\gamma_{10} X_{ij} + \gamma_{11} W_j X_{ij} + u_{1j} X_{ij}) + r_{ij} \] (4)
\[Y_{ij} = (\gamma_{00} + \gamma_{01} W_j + \gamma_{10} X_{ij} + \gamma_{11} W_j X_{ij}) + (u_{1j} X_{ij} + u_{0j} + r_{ij}) \] (5)

Fixed part
Random (error) part
\[Y_{ij} = (\gamma_{00} + \gamma_{01} W_j + \gamma_{10} X_{ij} + \gamma_{11} W_j X_{ij}) + (u_{1j} X_{ij} + u_{0j} + r_{ij}) \]
How to do?

Iterative testing of different models
Baseline model: null model, intercept-only model

\[Y_{ij} = (\gamma_{00} + \gamma_{01} W_j + \gamma_{10} X_{ij} + \gamma_{11} W_j X_{ij}) + (u_{ij} + u_{0j} + r_{ij}) \]

\[Y_{ij} = \gamma_{00} + \text{Grand Mean} + u_{0j} + r_{ij} \]

Variance between groups

residuum
Baseline model: null model or intercept-only model

\[Y_{ij} = \gamma_{00} + u_{0j} + r_{1ij} \]

randomly varying intercepts
Baseline model: null model, intercept-only model

\[Y_{ij} = (\gamma_{00} + \gamma_{01} W_j + \gamma_{10} X_{ij} + \gamma_{11} W_j X_{ij}) + (u_{0j} + u_{1j} X_{ij} + r_{ij}) \]

\[Y_{ij} = (\gamma_{00} + \text{Grand Mean}) + \text{Variance between groups} + \text{residuum} \]

which amount of variance is explained through the groups?

→ Intraclass correlation ICC = \(\frac{\text{Var} (u_o)}{\text{Var} (u_o) + \text{Var} (r_{ij})} \)
2nd model: Random intercept model with first level predictor

We predict the individual measures with a first-level predictor

\[Y_{ij} = (\gamma_{00} + \gamma_{01} W_j + \gamma_{10} X_{ij} + \gamma_{11} W_j X_{ij}) + (u_{1j} X_{ij} + u_{0j} + r_{ij}) \]

\[Y_{ij} = (\gamma_{00} + \gamma_{10} X_{ij} + u_{0j} + r_{ij}) \]
2nd model: Random intercept model with first level predictor

- randomly varying intercepts;
- same slope for all groups

\[Y_{ij} = \gamma_{00} + \gamma_{10} X_{jj} + u_{0j} + r_{ij} \]
3rd model: Random intercept model with second-level predictor

We predict the intercepts with a second-level predictor

\[Y_{ij} = (\gamma_{00} + \gamma_{01}W_j + \gamma_{10}X_{ij} + \gamma_{11}W_jX_{ij}) + (u_{1j}X_{ij} + u_{0j} + r_{ij}) \]

\[Y_{ij} = (\gamma_{00} + \gamma_{01}W_j + \gamma_{10}X_{ij} + \gamma_{11}W_jX_{ij}) + (u_{1j}X_{ij} + u_{0j} + r_{ij}) \]
3rd model: Random intercept model with second-level predictor

- randomly varying intercepts;
- intercepts predicted by W
- same slope for all groups

$$Y_{ij} = \gamma_{00} + \gamma_{01} W_j + \gamma_{10} X_{ij} + u_{0j} + r_{ij}$$
4. Random coefficient-model

\[Y_{ij} = (\gamma_{00} + \gamma_{01}W_j + \gamma_{10}X_{ij} + \gamma_{11}W_jX_{ij}) + (u_{1j}X_{ij} + u_{0j} + r_{ij}) \]

\[Y_{ij} = (\gamma_{00} + \gamma_{01}W_j + \gamma_{10}X_{ij} + u_{1j}X_{ij} + u_{0j} + r_{ij}) \]
4. Random coefficient-model

- randomly varying intercepts;
- intercepts predicted by W
- slope
- randomly varying slopes
- Variation of the slopes is not predicted

$$Y_{ij} = \gamma_{00} + \gamma_{01} W_j + \gamma_{10} X_{jj} + u_{1j} X_{jj} + u_{0j} + r_{ij}$$
5. Context model: cross-level interaction

\[Y_{ij} = (\gamma_{00} + \gamma_{01} W_j + \gamma_{10} X_{ij} + \gamma_{11} W_j X_{ij}) + (u_{1j} X_{ij} + u_{0j} + r_{ij}) \]

\[Y_{ij} = (\gamma_{00} + \gamma_{01} W_j + \gamma_{10} X_{ij} + \gamma_{11} W_j X_{ij}) + (u_{1j} X_{ij} + u_{0j} + r_{ij}) \]
5. Context model: cross-level interaction

- randomly varying intercepts;
- intercepts predicted by \(W \);
- slopes predicted by \(W \);
- randomly varying slopes;
- Variation of the slopes predicted by \(W \);

\[
Y_{ij} = \gamma_0 + \gamma_{01} W_j + \gamma_{10} X_{ij} + \gamma_{11} W_j X_{ij} + u_{1j} X_{ij} + u_{1j} + r_{ij}
\]
Pros

- deals with ML data
- allows to test group-level influences
- allows to test cross-level interactions
- method would optimally fit to many questions of CL

Instruction

- group level

collaboration

- interaction between group members
 - ICC as goal

learning

- learning as individual variable

IV → **Process** → **DV**
Pros and Cons of multilevel model

Cons

• sometimes difficult to specify
• needs many data

→ bottleneck for CL
5th take-home message

Do not test the whole model, but do it iteratively

(1) test, if the groups significantly differ
(2) explain the difference of the intercepts with group-level predictors
(3) test if the slope significantly differ
(4) explain the difference of the slopes with group-level predictors
(5) test if there is a cross-level interaction
Required sample size

see Hox, J. (2002), p. 175

• 30/30 rule (Kreft, 1996): ok for interest in fixed parameters
• accurate group level variance estimates: 6-12 groups (Brown & Draper, 2000)
• 10 groups: variance estimates are much too small (Maas & Hox, 2001)
• if interest is in cross-level interactions: 50/20
• if interest is in the random part: 100/20
Multilevel Articles in CSCL

• Strijbos, Martens, Jochems, & Broers, Small Group Research 2004
 → 33 students (10 groups); usefulness of roles on group efficiency

• Schellens, Van Keer & Martin Valcke, Small Group Research, 2005
 → 286 students (23 groups); measurement occasions within students; roles in groups

• Piontkowski, Keil & Hartmann, Analyseebenen und Dateninterdependenz in der Kleingruppenforschung am Beispiel netzbasierter Wissensintegration; Zeitschrift für Sozialpsychologie, 2006
 → 120 students (40 groups); sequenzing tool; amount of discussion in a group
Take home messages

- be aware of group effects
- think about working with fakes
- think about groups as unit of analysis
- look for the variances! → heterogeneous variances can be a sign for group effects
- look for different slopes!
- try to explain slopes
- look for the ICC
Questions?