Knowledge Community and Inquiry

- Scaffolding individual, Collaborative and Collective Inquiry

Jim Slotta,
OISE
University of Toronto
Thanks to

Vanessa Peters, Cheryl Madeira, Mike Tissenbaum, Michelle Lui, Cresencia Fong, Rebecca Cober, Alisa Acosta

(Researchers: University of Toronto)

Armin Krauss, Colin McCann, Matt Zukowski, Gabby Resch, Antonio Gamba, Rafael Pascual Leone, Michael Moncada

(Developers: University of Toronto)

Tom Moher, Alessandro Gnoli, Brenda Silva

(Researchers: University of Illinois at Chicago)

Ben Peebles, Julia Murraye, Richard Messina, Maria Nino Soto

(Teachers: ICS & UTS Schools)
Phase 1

Personal History and Context
Slotta - research

Cognitive Psychology - Pittsburgh
1990 - 1996

Web-based Learning Environments - Berkeley
1997 - 2005

Collective Inquiry for Secondary Science - Toronto
2006 - present

Smart Classrooms, Orchestration - Toronto
2010 - present
Web-based Inquiry Science Environment - Scaffolding students and teachers
Help Students Learn From Each Other
- Discussion, debate, peer review
Contributions of WISE

- Enabled research of pedagogical patterns:
 - Design, debate, critique, modeling, others
- Scaffolds students and teachers – new classroom patterns
- Supported 20-30 researchers, internationally
- Pioneered author-ware, portal technologies
- Created “Open” curriculum library
 - Disciplinary partnerships (Wolves, Frogs, Aquarium, Physiology)
- Research partnerships
 - U.S., Canada, Europe, Scandinavia, Asia
The “Knowledge Community” Approach
The Knowledge Community Approach

- Students work collectively to aggregate and edit a corpus of materials (e.g., wikis, notes)
- Students drive learning, define questions and methods
- Emphasis on community identity and growth (instead of individual learning)
- Focus on discourse patterns, distributed expertise
- Used within several lines of educational research
 - Scardamalia & Bereiter (Knowledge Building)
 - Hakkarainen & colleagues (Progressive Inquiry)
 - Brown & Campione & colleagues (Fostering Community of Learners)
Challenges to the Knowledge Community Approach *(for researchers and teachers)*

- Addressing specific learning goals and standards
 - E.g., chemistry, Biology

- Complex interactions, inquiry processes
 - Group membership, roles, materials, exchange, technologies…
 - Guiding the “flow” or sequence of activities

- Managing and using the classroom knowledge base

- Supporting student meta-knowledge
 - Epistemological perspective (also the teacher’s!)
 - Role of community, knowledge, peers, etc

- Assessing student progress; Giving feedback
Research turning point (2006)

- Began very modestly, wanting to consider classrooms or multi-classrooms as “Web 2.0 communities”
- Began to re-learn about FCL and Knowledge Building
- Tension 1: individual learning < -- > collective knowledge building
- Tension 2: unfettered inquiry < -- > progress on defined learning goals
- Identified secondary science as a key requirement
- Inspired by FCL, sought to develop a pedagogical model that could connect students as a community but ensure individual learning progressions and some open inquiry.
Questions

- If you were a high school biology or physics teacher, what would be the biggest challenges to supporting your students in defining their own inquiry questions and approaches?
- How hard do you think it would be to “unseat” students’ epistemic commitment to individual achievement (grades, exam performance)? Are they natively interested in collective knowledge advancement? Have they developed some sense of collective epistemology, as a result of possible engagements in Web 2.0 communities?
Phase 2

Knowledge Community and Inquiry
Pedagogical Model for Collective Inquiry

• Establish a knowledge community
 • *focus on “collective progress”* (social epistemology)

• Include Student Contributed materials
 • *Student ideas become resources for curriculum*

• Complex, Collaborative interaction designs
 • *Multi-week (i.e., whole semester) curricula.*
 • *Small groups, cooperative tasks, interdependence of groups*
 • *Building a “knowledge base” and then applying it.*

• Social aggregation of content (e.g., “Web 2.0”)
 • *Wiki, Semantic metadata, social networks*
 • *Students’ inquiry depends on ideas from peers*
Pedagogical Model - definition

- Instantiate theoretical principles about learning
- Structural, functional and relational assertions
 - Domain General (can apply to many topics)
 - Commitments to: Content domain + learning processes + epistemic cognition.
- Produces testable, high-level curricular “scripts”
 - Individual, collaborative and collective activity sequences
 - Roles, goals, responsibilities
 - Pedagogical Logic
 - Switching conditions, grouping/re-grouping conditions
Knowledge Community and Inquiry (KCI)
KCI Elements

• Epistemological commitments
 • “We’re all in this together; it’s how we’re going to learn”

• Collective construction of Knowledge Base
 • Student contributed pages, notes, images, votes, tags, etc.

• Collaborative Inquiry projects
 • Use the knowledge base as a resource, index to science domain

• Assessable Learning outcomes
 • Link directly to learning goals (standards)

• Sustained, distributed interactions
 • Multi week, often semester long curricula
Principle 1: Students work collectively, creating a knowledge base that serves as a resource for their inquiry within a specific science domain.

- Epistemological Commitments
 - Students “identify” as a community: goals and purposes of learning together and advancing the community’s knowledge.
 - The knowledge base needs to be understood and valued as “their community resource.”

- Pedagogical Affordances
 - Knowledge base: indexed to the targeted science domain
 - Activities indexed to semantic and scripting variables

- Technology Elements
 - Wikis, database, tools and materials, tablets, computers & phones, metadata schemes, tagging schemes
P-E-T Triangle: design tensions

Diagram 1a: Engeström’s Activity System (1987)
KCI Design Tensions

• Declares a value (Chinn, 2012) for the quality of learning

• Instantiates that value in a structural activity sequence, material & social interactions

• Supports the script (activities, materials, tools, permissions, domain connections)
KCI Principles

Principle 2: The knowledge base is accessible as a resource, as well as for editing and improvement by all members.

- **Epistemological Commitments**
 - Knowledge building processes: improvable ideas, measurable or observable progress within the knowledge base, emergent content organization (i.e. semantic structure)

- **Pedagogical Affordances**
 - Scripts for jigsaw and collaborative knowledge construction;
 - visualizations and interfaces for accessing the knowledge base;

- **Technology Elements**
 - Socially editable media, wikis, notes, or collections of observations; social tagging; visualizations; recommender agents
 - Authorship attributions; versioning and forking
Principle 3: Collaborative inquiry activities designed to address the targeted science learning goals, including assessable outcomes.

- **Epistemological Commitments**
 - Inquiry: students build on existing ideas to develop understanding.
 - Social/Collaborative dimension of shared ideas, discourse and practice

- **Pedagogical Affordances**
 - Critique, comparison, design and reflection.
 - Students create artifacts, reflect on those artifacts, and apply them as resources within a larger inquiry project.

- **Technology Elements**
 - Web-based learning activities, wikis, Web portal, video editing, simulations, tablet-based observation forms, laptop and tablet interfaces
Individual Students:

- *Inquiry Trajectories in KCI*

- **Scaffolded Inquiry**
 - *Individual learning activities*

- **Promote interactions**
 - *With peers*
 - *With materials*
 - *With physical and virtual environments*
KCI Principles

Principle 4: The teacher’s role must be clearly specified within the inquiry script, in addition to a general orchestrational responsibility.

- **Epistemological Commitments**
 - Teacher must see student learning as a collective endeavor (not just “group learning”) and see herself as a member of that community
 - Teacher must understand student-generated knowledge as a paramount product, raw resource, and driver of inquiry

- **Pedagogical Affordances**
 - Teacher-led discussions bring community into focus, consensus.
 - Teachers facilitate learning by interacting with students

- **Technology Elements**
 - Smart boards, tablets for teachers. Consequential scripting for teachers; Orchestrational supports (ambient displays, etc)
Research Methods - KCI studies

• “Model-based Design research”
 • Design-based research (Brown, 1992; Collins, Joseph & Bielaczyc, 2004)
 • model-based research (FCL, Collaborative Reasoning, Case-based, LBD, PI)

• Substantial curriculum (several weeks or months)
 • Implement KCI model, integrate technologies

• Co-design process (Roschelle et al., 2007)
 • 3-6 months prior to the start of unit and throughout implementation
 • Teacher “owns” the resulting curriculum
 • Design targets study of research questions
“Scripting” Complex Pedagogical Designs

- **External scripts:** “instantiate” the pedagogical model
 - E.g., Collaborative argumentation (Kollar, Fischer, & Slotta, 2007)
 - E.g., Concept Grid, (Dillenbourg, 2002)
 - E.g., Collaborative Reasoning (Richard Anderson)
 - E.g., Fostering Communities of Learners (FCL- Brown and Campione)

- **Specify the pedagogical flow/logic**
 - Roles or groups for students and teacher(s)
 - Materials, activities, assessments (for each group)
 - Transition points or Conditions (changing group or activity)
 - Notion of “unbound” or open ended scripts that depend on emergent phenomena
KCI Climate Change unit
- 10 week, coherent curriculum

Participants
- 5 class sections (108 students) of a grade 9 science class.
- Three teachers (2 sections, 2 sections, 1 section)

Technology environment: Custom Drupal platform

Overview:
- 1 week of epistemic treatment, defining emergent “issues”
- 6 weeks of collaborative knowledge construction (issue pages)
- 2 weeks of scaffolded inquiry (remediation plans)
Epistemological Framing & Building Community Knowledge

Introduction to Knowledge Community
- Collaboration in sciences
- Knowledge Community
- Example of an attempted knowledge community

Initiating Community Knowledge
- Create annotated reference pages individually
- Share the reference pages in Drupal

Pedagogical & Epistemic Elements

Technological Scaffold
- Drupal page for references
 - Tagging
Small Group Collaboration

- Brainstorming issues related to Climate Change

Personal Reflection

- Philosophy of science
- Attitudes toward collaborative work

Personal reflection form
Add an Issue

<table>
<thead>
<tr>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture/Traditional</td>
<td>Increase of droughts and crop failures...</td>
</tr>
<tr>
<td>Alberta Tar Sands</td>
<td>do you know just how bad these are???...</td>
</tr>
<tr>
<td>Carbon Tax, carbon credit, carbon offset programs</td>
<td>Carbon tax (focus of all sections in...</td>
</tr>
<tr>
<td>Changing Migration Patterns</td>
<td>Disturbance in migration routes:</td>
</tr>
<tr>
<td>Deforestation</td>
<td></td>
</tr>
<tr>
<td>Desertification</td>
<td>NOTE - some of the below don't fit anymore....</td>
</tr>
<tr>
<td>Economy/Sustainable Technologies</td>
<td></td>
</tr>
<tr>
<td>Fishing Industry</td>
<td>many fish stocks are already stressed...</td>
</tr>
<tr>
<td>Glaciers melting</td>
<td>Melting ice will cause less tourism in...</td>
</tr>
</tbody>
</table>
Collective Knowledge Construction

• Collaborative inquiry: Issues groups
 • Integrate scientific concepts (sections)

• Planning & Monitoring
 • Planning pages for groups
 • Reflection notes

Pedagogical & Epistemic Elements

Technological Scaffolds

• Drupal “Issue templates” and tags
• Planning pages, reflection notes
• Peer comments
• Models
 • TELS: Global Warming/Virtual Earth
 • Canadian Centre for Climate Modeling
The Sciences

Greenhouse Effect:
Please give a detailed description of how the science of greenhouse effect causes or influences your issue.

Thermal Energy and Circulation:
Please give a detailed description of how the science of thermal energy and circulation causes or influences your issue.

Carbon Sinks and Sources:
Please give a detailed description of how the science of carbon sinks and sources causes or influences your issue.

Evidence:
Here are some sources of evidences that documents this issue.

Models and Scenarios:

Legislation:
Here are some current legislations that have been put in place to address this issue.

Remediation:
Here are some current efforts that have targeted this issue in attempt to slow it down.
Supporting Collaboration: Drupal “planning pages”

Create Todo Page

Please use this page to coordinate your authoring efforts with your peers.

Title: *

Body:

Path:
Reflection Notes: Collecting student ideas

Thu, 11/12/2009 - 17:05 — Anonymous

How do greenhouse gases relate to your issue:

How did you contribute to your group’s effort:
- Adding content to your issues page.
- Signing up for a section on your group page.
- Completing the section for which you had signed up.
- Editing content added by other group members.
- Leaving comment for group members on the quality of their work.
- Leaving comment for group members pointing out things that need to be done.

How have other members of your group helped you understand this topic of greenhouse gas and how it relates to your issue:

How do you feel that you can help your group mates get more involved and be more productive:
Culminating Inquiry Project

- Small Groups
 - Within-section groups
 - Remediation plans
 - Linking to relevant issues

Pedagogical & Epistemic Elements

- Drupal template (simultaneous editing)
- Tags
- Models
 - TELS: Global Warming/Virtual Earth
 - Canadian Centre for Climate Modeling

Technological Scaffolds
Description:
Please describe the Remediation clearly (~2 paragraphs; ~300-500 words).

text: test

Issues Impacted:
Please list all issues that are related to this remediation from the Issues list your classmates have explored.

Effectiveness:
Describe how the remediation will be effective for two of the issues in your list above where it appears to have had the greatest impact. (1 paragraph per issue; ~150-250 words each) example

Overall Effectiveness:
Based on the sections above, how would you summarize the overall effectiveness of your remediation? (~1 concise paragraph; 250 words)

Improvements/Extensions/new Alternatives to the Remediation:
Now, provide suggestions about how to improve the Remediation's effectiveness (~500 words)

- e.g. by extending on the remediation, or recommending legislation (laws) with accompanying penalties/rewards

Or, perhaps you can see an alternative remediation that could be implemented.

Prediction of Future Effectiveness of Modified Remediation:

Assuming that your remediation was applied faithfully (including monitoring and enforcement) for the next 50 years, what will be the impact on climate change, in general and in terms of the specific issues you have discussed above?

Please justify your response in terms of the science of climate change, and feel free to use the WISE Climate Change models for Greenhouse gas and Population/CO2 emissions (by running the model, adjusting the variables, and taking a screen capture of the model in 50 years time. Make sure that you describe what changes to the model's variables you made, and why.)
Outcomes: Climate Change Unit

- 46 Climate Change Remediation Projects (collaborative, within section)
 - KCI “Assessable Outcomes” – indexed to learning goals
 - Each one addressed at least 3 issues
 - Each one included major components of climate science
 - Each included a segment on modeling
- Students achieved a high competency on science content
- Applied their knowledge in a constructivist inquiry task
- Adopted collaborative and collective epistemic values
Learning Gains
- Climate change science

- Significant learning gain ($p<0.001 \ t=15.69$)
Phase 1 Discussion

Questions

• If you were a high school biology or physics teacher, what would be the biggest challenges to supporting your students in defining their own inquiry questions and approaches?

• How hard do you think it would be to “unseat” students’ epistemic commitment to individual achievement (grades, exam performance)? Are they natively interested in collective knowledge advancement? Have they developed some sense of collective epistemology, as a result of possible engagements in Web 2.0 communities?
Phase 2 Discussion

Questions

- Is KCI too scripted to be counted as a “knowledge community approach”?
- Will it still be difficult to learn secondary science this way?
- How would students respond to such instruction?
Phase 3

Technology-Enhanced Scripting and Orchestration
Smart Classrooms

- Orchestrating Collective Inquiry

- Investigate the role of the physical learning space
 - Walls, floor, furniture, physical location of students

- Embodied forms of learning; tangible & physical elements

- Core technology: SAIL (open source smart classroom)
 - XMPP messaging; real time data mining; intelligent agents

- New forms of human computer interaction
 - Collaborative groupware
 - Emergent Learning Objects
 - Tangible and Embodied Interactions
 - “Real time pedagogical logic” (ill determined, un-bound)
Intelligent Agents (Software)

• Coordinate flow of people, groups, activities, materials
• Coordinate ambient displays
• Execute pedagogical scripting logic
 • Process semantic metadata
 • Build and respond to ELOs
 • Resource fetching, distribution
• Examples
 • Bucket agent, Grouping agent
 • Aggregate, Collaborative Group
Scalable Architecture for Interactive Learning (SAIL)
Smart Classroom Environment
Smart Classroom Script

Observe and Annotate Script
- Students pick any video wall and sign-in
- Once all students are signed in, the teacher launches the task
- Students watch the video
- Students attach tags to the video
- All four videos watched?
 - Yes: Teacher moves students to next step in the activity
 - No: Tracker Agent

Step Two
- Students are assigned to a wall based on previous step
- Students log into their assigned wall
- Students are given “Scaffolding” (challenge) Question
- Students collectively filter principle tags on Video Board
- Group clicks “Done Sorting” on board
- Tracker Board is Updated

Consensus Script
- Students debate and filter their collective choices
- Group clicks “Done Sorting” on board
- Tracker Board is Updated

Step Three
- Students are assigned to a wall based on previous step
- Students shown problems from previous step with pre-activity equations
- Students promote equations to shared display that might help solve challenge
- Students debate and filter their collective choices
- Group clicks “Done Sorting” on board
- Tracker Board is Updated

Leveraging Knowledge Base Script
- Students debate and filter their collective choices
- Group clicks “Done Sorting” on board
- Tracker Board is Updated

Teacher Input Script
- Students submit free-form variables and equations to the shared board
- Students debate and filter their collective choices
- Group clicks “Done Sorting” on board
- Tracker Board is Updated

Consensus Script
- Students debate and filter their collective choices
- Group clicks “Done Sorting” on board
- Tracker Board is Updated

Consensus Script
- Students are given a subset of the connected problems
- Each student given a subset of the connected problems
- Students promote problems to shared display that might help solve challenge
- Students debate and filter their collective choices
- Group clicks “Done Sorting” on board
- Tracker Board is Updated

Teacher Alerted to check group work
- Teacher does not approve?
 - No: Tracker Board is Updated
- Teacher approves?
 - Yes: Tracker Board is Updated

Step Four
- Students use the developed knowledge base to solve the question
- Students Create Video Answer
- END OF ACTIVITY
Example: Physics Learning Across Contexts and Environments (PLACE)

- 12-week high school physics. Two classes (n=20, n=25)
- Individual, Collaborative and Collective activities
- User contributed content
 - adding physics examples; creating challenge problems
 - Tagging, commenting on homework problems
- Final Smart Classroom activity: “Solve ill-structured problems”
 - Used Hollywood video clips as reference point
 - Collaboratively set up and solve the video “problems”
- S3 Reference implementation (agent APIs, xml, ambience)
Mike Tissenbaum: Research Questions

• How can smart classrooms reduce the orchestrational load for students and teachers?

• How can intelligent agents support orchestration?
 • Creating emergent learning objects
 • Orchestrating pedagogical logic
 • Fetching, distributing and creating materials
 • Coordinating ambient features
 • Support seamless learning across contexts
Scaffolded Inquiry Tools and Materials

Personal Tablets: student and teacher

- Scaffolds students at each stage
 - User interface
 - Collaborative learning support
- Guide students to room locations
- Manage student interaction data (i.e., to S3, agents, etc)
- Coordinate with teacher tablet
 - “pause the room”
 - On agreement, “advance to next stage”
Scaffolded Inquiry Tools and Materials

Interactive Whiteboards

- Dynamic:
 - Display depends on learning task and student interactions
 - Not just a screen, but a driver of the knowledge construction
- “Public” and collaborative:
 - Aggregate contributions from group
 - Idea negotiation and refinement
 - Visual, interactive, and tangible
- Two modes:
 - Group scribble (all tablets drive)
 - Large laptop (one mouse, keyboard)
Physical and Locational Dependencies

- Specific actions, simulations, and tasks are mapped to the physical space (4 video/groups)
- interconnected interactions
 - Students work together at one space or connect ideas across multiple spaces
 - Students move from one location to the next, assigned by agents
- Support growth of ideas
 - Individual displays retain all contributions, ready for next group to take over.
Ambient Awareness – at a glance

Showing teachers and students “Where we are”

- Large, central display shows current location and movement of students in the room
- Icons next to student avatars show tasks completed by each student
- Coloured bar at the top shows timing of individual tasks
Example Two: EvoRoom

- 12-week high school biology. Two classes (n=20, n=22)
- Mix of contexts (classroom, home, zoo, smart room)
- Research Focus of Smart room: Immersive environment
- Challenges for Immersive Smart room:
 - Find a topic that allows for deep scientific learning (complex, engaging) = “evolution and biodiversity”
 - To connect the experience in the room to a broader curriculum
 - To design materials that promote interactions
Michelle Lui: Research Questions

- How can immersive, room-sized simulations support collective inquiry?
- What interaction patterns support knowledge co-construction?
- How should such simulation activities be embedded within the broader curriculum?
 - To support learning and instruction
 - To ensure that it’s not just a motivating “supplement”
Smart classroom
EvoRoom

- Large screen projections around the room display the immersive simulation, together with audio tracks of natural rainforest sounds.
- Transform a smart classroom into a rainforest in Southeast Asia.
- Students are carefully scripted to make observations of whether individual species are present in the environment, and evaluate large cladogram (Emergent Learning Object).
interactive whiteboards

large displays

projected table
Emergent Aggregates of Community Knowledge

- Embodied, immersive experience of rainforest over 200 million years
- Distributed pedagogical design
- Community produces knowledge artifacts (e.g., cladogram)
- Students and teacher use the artifact in subsequent activities
• Representation is a clear, dynamic product of their interactions
• A resource belonging to, representing their community’s progress
• Provides a target for student inquiry and teacher discussions
Michelle Lui
EvoRoom
Encore Lab
2010-13

http://vimeo.com/63296638
Questions

- How can highly networked technologies and real-time messaging add new capabilities for scripting?
- What risks are there for “over-scripting”?
- What new opportunities are there for leveraging...
Discussion

• Learning progressions within a KCI script
 • Student inquiry trajectories (individual, collaborative)
 • Discourse practices (technology mediated knowledge building)
• Epistemic Cognition within KCI script
 • Interplay between technology, pedagogy and epistemic commitments
• Tangible and Embodied Learning
• Online Learning, MOOCS, etc
• 21st century schools,
• ??